MTH 304 Topology

Homework 2

- 1. Let A, B, and A_{α} denote subsets of a topological space X. Determine whether the following hold.
 - (a) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (c) $\cup_{\alpha} \bar{A}_{\alpha} = \overline{\cup} A_{\alpha}$.
 - (d) $\overline{A \cap B} = \overline{A} \cap \overline{B}$
 - (e) $\cap_{\alpha} \overline{A}_{\alpha} = \overline{\cap A_{\alpha}}.$
 - (f) $\overline{A \setminus B} = \overline{A} \setminus \overline{B}$.
 - (g) $\overline{A} \times B = \overline{A} \times \overline{B}$.
- 2. Show that X is Hausdorff if, and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in the product topology on $X \times X$.
- 3. Consider \mathbb{R} with co-finite topology. Find the closure of the set $A = \{1/n : n \in \mathbb{N}\}$.
- 4. Exercises 16 and 18, Section 17, page 99.
- 5. For $A \subseteq X$, define the boundary of A by

$$\partial A = \bar{A} \cap \overline{(X \setminus A)}.$$

- (a) Show that the interior A^0 and boundary ∂A are disjoint.
- (b) Show that $\partial A = if$, and only if A is both open and closed.
- (c) Show that U is open if, and only if $\partial A = \overline{U} \setminus U$.
- (d) If U is open, is it true that $U = (\overline{U})^0$? Justify your answer.